Existence of Positive Solution to Second-Order Three-Point BVPs on Time Scales

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Positive Solution to Second-Order Three-Point BVPs on Time Scales

We are concerned with the following nonlinear second-order three-point boundary value problem on time scales −xΔΔ t f t, x t , t ∈ a, b T , x a 0, x σ2 b δx η , where a, b ∈ T with a < b, η ∈ a, b T and 0 < δ < σ2 b − a / η − a . A new representation of Green’s function for the corresponding linear boundary value problem is obtained and some existence criteria of at least one positive solution ...

متن کامل

Existence of Solutions to Second-Order BVPs on Time Scales

2 School of Mathematics The University of New South Wales, Sydney NSW 2052, Australia Abstract:We consider a boundary value problem (BVP) for systems of second-order dynamic equations on time scales. Using methods involving dynamic inequalities, we formulate conditions under which all solutions to a certain family of systems of dynamic equations satisfy certain a priori bounds. These results ar...

متن کامل

Existence of positive solutions for a second-order p-Laplacian impulsive boundary value problem on time scales

In this paper, we investigate the existence of positive solutions for a second-order multipoint p-Laplacian impulsive boundary value problem on time scales. Using a new fixed point theorem in a cone, sufficient conditions for the existence of at least three positive solutions are established. An illustrative example is also presented.

متن کامل

Existence theory for positive solutions of p-laplacian multi-point BVPs on time scales∗

This paper is concerned with the one-dimensional p-Laplacian multi-point boundary value problem on time scales : (φp(u Δ))∇ + h(t)f(u) = 0, t ∈ [0, T ] , subject to multi-point boundary conditions u(0) −B0 m−2 i=1 aiu (ξi) = 0, u(T ) = 0, or u(0) = 0, u(T ) + B1 m−2 i=1 biu Δ(ξ′ i) = 0, where φp(u) is p-Laplacian operator, i.e., φp(u) = |u| u, p > 1, ξi, ξ′ i ∈ [0, T ] , m ≥ 3 and satisfy 0 ≤ ξ...

متن کامل

Positive solutions to semi-positone second-order three-point problems on time scales

Using a fixed point theorem of generalized cone expansion and compression we establish the existence of at least two positive solutions for the nonlinear semi-positone three-point boundary value problem on time scales uDrðtÞ þ kf ðt;uðtÞÞ 1⁄4 0; uðaÞ 1⁄4 0; auðgÞ 1⁄4 uðTÞ: . All righ Mathem rson), c R. Ande Here t 2 1⁄2a; T T, where T is a time scale, a > 0; g 2 ða;qðTÞÞT; aðg aÞ < T a, and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2009

ISSN: 1687-2762,1687-2770

DOI: 10.1155/2009/685040